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Indicators of Accuracy in Structure Factor Measurement 

FI ' I  

BY S. C. ABRAHAMS 

Bell Telephone Laboratories Incorporated, Murray  Hill, N e w  Jersey, U.S.A.  

Objective estimation of the error (o'Fmeas) in each structure factor (Fracas), by a procedure such as that 
outlined in Acta Cryst. (1964) 17, 1327, allows the indicator 

qle =- [z~ (A2Fmeas/a2Fmeas) + Z~_n,J 1:2 

to be evaluated, where dF~e,~ = IFme~l - IFcald, Zm--n,~" 2 is given by the x 2 distribution at the e-significance 
level, and the model for which ZA2Fm~a~ is minimized contains m independent F~as and n variables. 
The sensitivity of ~'~ to errors in Fmeas is examined under both real and hypothetical conditions. For the 
real case, the range in ~0.01 for eight recently measured inorganic crystals indicates the average minimum 
residual error in aFmeas to be about 1%, the maximum error to be about 21%. The hypothetical case is 
considered by propagating several types of error into a set of 772 independent Frneas corresponding to a 
model consisting of 10 independent atoms undergoing isotropic thermal vibration. The indicator q:0.01 
detects a systematic intensity error at a level in which the maximum intensity error in 97% of the data 
reaches 5%. Long term drift in the experiment is indicated with considerable sensitivity by ~'0.01. Syste- 
matic error as a function of scattering angle is detectable only if the aFmeas contain a component due to 
the suspected error. 

Introduction 

Structure factors (Fracas) are generally measured, not 
for the purpose of establishing their intrinsic magni- 
tudes, but in order to derive the values of related phys- 
ical quantities. Typical of such derived quantities are 
atomic positions, atomic amplitudes of vibration, 
atomic scattering factors and electron distributions. 
The correctness with which these derivations are made 
depends both upon the accuracy of the Fracas and also 
upon the validity of the theoretical model. In this paper 
it is assumed that departures of the model from validity 
are negligible compared with the errors in the Fracas. 
It is also assumed that the differences between the 
Fracas and the corresponding parameters in the theo- 
retical Feale have been minimized by the method of 
least squares. 

The weakness of the customary R factor as an indi- 
cator of fit between Fracas and Feale is well known. 
Errors in Fracas that  are systematic, with respect to 
functions that may be varied in the minimizing process, 
will be improperly absorbed into the derived function. 
The consequence is not only an R factor that is too 
small but, more seriously, the possibility of magnitudes 
for the apparent standard deviations of the derived 
functions that are also too small (see, e.g. Hamilton & 
Abrahams, 1968). 

Based on the assumptions above, which are also 
implicitly included in the R factor, an alternative indi- 
cator of accuracy of the Fracas is developed herein, and 
examples of its use are given. The influence of various 
kinds of error on this, and on other indicators, is also 
considered. 

Sources of error in Fmeas 

The uncertainties in a derived quantity are correctly 
calculated only if the uncertainties in the measured set 

of primary quantities are correctly assigned. Propaga- 
tion of error theory (see, e.g. Birge, 1939) provides the 
basis for the method of calculation. It is hence neces- 
sary to recognize the more important sources of error 
that remain in the Fracas after all corrections have been 
applied. Other papers at this International Meeting will 
consider the origin, the possibility of correction, and 
the magnitudes of many error sources in detail. The 
principal sources of error in Frneas are grouped to- 
gether, for convenience, in Table 1. A procedure for 
the evaluation of the errors associated only with the 
diffractometer itself, neglecting the crystal under study, 
was given at an Open Session of the Commission on 
Crystallographic Apparatus held in Rome, 1963 (Abra- 
hams, 1964a). 

Table 1. Error sources in Fmeas 

I. Random 
(a) Poisson distribution in 

the arrival of quanta in 
the incident X-ray beam. 

(b) Short term variations in 
incident X-ray beam flux. 

(c) Short term variations in 
sensitivity of detection 
system. 

II. Systematic 
(a) Differences between 

measured and actual 
crystal dimensions. 

(b) Incorrect transmission 
coefficient. 

(c) Incorrect extinction cor- 
rection. 

(d) Non-monochromatic in- 
cident X-ray beam. 

(e) Thermal diffuse scat- 
tering. 

(f) Multiple scattering. 
(g) Inhomogeneous crystal 

specimen. 
(h) Radiation damage. 
(i) Mechanical misalign- 

ments. 
(j) Long term variation in 

incident beam flux. 
(k) Long term variation in 

sensitivity of detection 
system. 



166 I N D I C A T O R S  OF A C C U R A C Y  IN S T R U C T U R E  F A C T O R  M E A S U R E M E N T  

Estimation of 6Fm~.~ 

The variance in Fmeas(o'2Fmeas) is given, approximately, 
by equation (1) 

G2F /w2 -- ~F G2 F 2 mo~/~ moa~-- 'f:( m e ~ ) / f  / ( F m ~ )  . (1) 
J 

We assume that crf:(Fmeas)~fj(Fmeas), where f :  is the 
j t h  correction factor for Fracas. To evaluate equation 
(1), it is necessary to assign magnitudes to each of the 
j t h  variances on the right-hand side of the equation. 
The variances due to the following random sources of 
error are readily determined experimentally. The Pois- 
son distribution in the arrival of quanta in the incident 
beam at the crystal has a variance (~C) that is directly 
related to the number of quanta (~ : )  received by the 
counter. Numerous examples of the evaluation of this 
variance based on counting statistics are given in the 
literature (e.g., Shoemaker, 1968; Cetlin & Abrahams, 
1963). The short term variations given in Table 1 under 
I(b) and I(c) are related to the diffractometer system 
stability. These variations may be determined directly 
(e.g. Abrahams, 1964a). A stability range of +p  per 
cent in I(b) and I(c) (Table 1) then approximately cor- 
responds to a variance of 4p 2 x 10-4ff4eas . 

The systematic variances have previously (Abra- 
hams, 1964b) been considered by dividing them into 
anisotropic and isotropic classes. Anisotropic error is 
detectable by variations among magnitudes of sym- 
metry-related reflections, i.e. by pseudo-replication, 
using equation (2), 

P 
2 2 2 2 2 

O ' a n i s o ( F m e a s )  = S (F,-Fmeas)  + ( ? -  1) (2) 
j = l  

where o'Fmeas = 2 ~rFm~aJ2Fmeas, and z Fracas is given by 
the equation 

1 e 
2 __ 

Fracas P :71 F~, (3) 

and P members of a form have been measured. For  
crystals of low symmetry, or if P < 2 for a given form, 
equation (2) is not recommended. In such cases, aver- 

age values for 2 a a;,niso(Fmeas ) are obtained for each range 
of 2 Fracas, as described by Abrahams & Reddy (1965). 
An estimate of anisotropy in the extinction effect, and 
of the error caused by multiple scattering, may be ob- 
tained experimentally by the variation observed in 
intensity on rotation about the scattering vector. 

Direct measurement of the remaining unreplicated 
error sources is more difficult: instead, if not possible 
to eliminate experimentally, such as for II(i), II( j)  and 
II(k) in Table 1, a numerical estimate may be made 
and the corresponding variance derived as in the case 
of short range stability above. Replacing equation (1) 
by the equivalent percentage variances, and rearrang- 
ing, we obtain: 

o.2F 2 = a2(counting • • 2 z statlstlcs) + O-aniso(Fraeas) meas  

+ 4 Z k z x 10 -4F4 
- - m e a s  

i 
(4) 

where ki is the estimated percentage error due to 
sources listed in Table 1 that have not been measured 
experimentally. 

Typical magnitudes for the summation term in equa- 
tion (4) are given under 4 X lq z in Table 2. 

i 

Accuracy indicators 

In addition to the usual R and wR factors obtained 
on minimization of the difference terms AF=lFmeasl  
-Ifealel  by means such as the method of least squares, 
the S factor is readily calculated by equation (5): 

S 2= £" (A2F/a2Fmeas)+(m-n)  (5) 

where there are m observations and n variables used 
in the minimization process. The expression S 2 is a 
measure of the goodness-of-fit, and estimates the vari- 
ance of an observation of unit weight. This quantity, 
which is routinely calculated by the standard O R F L S  
program of Busing, Martin & Levy (1962), should have 
a value close to unity if the assignment of o'Fmeas terms 
is correct, i.e. if each observation is correctly weighted, 
since the weight of Fracas = 1/¢rZFmeas. 

Table 2. Exper imental  indicator values 

Crystal rn n 4 Z k~ 2 R wR 
i 

LiNbO3 247 8 42 0 .0383  0.0501 

BilzGeO20 631 23 98 0 -0623  0.0808 

GaFeO3 772 40 37 0 . 0 4 6 5  0.0517 

DyMn205 976 40 61 0-0401  0.0582 

8 c 2 ( W O 4 ) 3  1731 78 179 0"0622 0"0895 

~x-MnMoO4 1873 62 70 0"0574 0"0688 

Fe3(POa)2.4HzO 1919 89 27 0 . 0 3 3 6  0-0436 

~x-ZnMoO4 3269 163 91 0"0726  0.0708 

°~0.01 

0.889-1.127 

0.792-0"919 

0.918-i.050 

1.018-I.147 

0.977-1"069 

1-061-I.156 

0.890-0"969 

0.902-0-962 

O]lO.O01 

0.863-1.168 

0-777-0.939 

0.902-I.071 

1.002-I.167 

0.965-i .083 

1.049-I.171 
0"880-0.981 

0"894-0"971 

Reference 

Abrahams, Reddy & Bern- 
stein (1966) 

Abrahams, Jamieson & 
Bernstein (1967) 

Abrahams, Reddy & Bern- 
stein (1965) 

Abrahams & Bernstein 
(1967) 

Abrahams & Bernstein 
(1966b) 

Abrahams & Reddy (1965) 

Abrahams & Bernstein 
(1966a) 

Abrahams (1967) 
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The deviation of S from unity is a measure of the 
validity of the weight assignment. This measure is 
made quantitative if S is compared with the distribu- 
tion of values expected for experiments with m obser- 
vations and n variables. Equation (6) gives the value 
of S that will be exceeded in 100c~ per cent of replica- 
tions of such an experiment 

(S2)~=ZZm_,,Jm - n ,  (6) 

where Z~-,,~ is the 100c~ per cent point of the chi-square 
distribution over m - n  degrees of freedom. Tabulated 
values for this distribution generally do not extend to 
large values of m - n ,  at the various c~-levels of signifi- 
cance. For most crystallographic calculations, the 
values obtained from equation (7) are amply accurate 
(Wilson & Hilferty, 1931): 

Xm-n,~ - (m - n) 1 - 9(m - n) + u~ .  9(m - n--------~ 

(7) 

where u~=2.5758 at the 0.01 level and 3.2905 at the 
0.001 level. A simple numerical approximation to the 
standard deviation in (S)~ is given by u,,/[/2(rn- n). 

It is convenient to compare S 2 with ($2)~ directly, 
by equation (8): 

°'~o~=[82/(S2)o:]1/2, [Sz/(S2)l-o~] 1/2 . ( 8 )  

The range of ~ given by equation (8) corresponds 
to a confidence interval of 100(1-2~) per cent. Hence, 
qz'0.01 represents an interval which should not be ex- 
ceeded in more than one per cent of the replications 
of the experiment. In case the qg~ range includes unity, 
the assignment of aFmeas may be held valid at the 
level. Departure of the qg, range from unity expresses 
the error in the mean aFmeas. 

Exper imenta l  test  o f  accuracy  indicators  

Values of o'Fmeas were assigned to each Fmeas deter- 
mined, for a group of eight crystals (Table 2), by the 
procedure indicated above. The references in Table 2 
supply the details of the experiments. These crystals 
were chosen to give a wide range of m and n. The 
constant term of equation (4), used to estimate the 
non-replicated error sources listed in Table 1, is given 
for each crystal under 4 ~r k~. The range in magnitude 

i 

of this term is also wide, as seen from Table 2. The 
largest value, for Sc2(WO4)3, is due in large part to the 
2.2% variation from sphericity of the sample used, 
together with the magnitude of the linear absorption 
coefficient/z = 30.96 mm -1. 

Examination of the q/~ ranges in Table 2 shows, at 
the significance level of 1%, that assignment of o'Fmeas 
is acceptable for three of the crystals; of the others, 
the ranges are unacceptably small for three and un- 
acceptably large for the two remaining crystals. The 
maximum least deviation at this significance level is 

8.1% for BilzGeO20: hence, the mean value of o'Fmeas 
for this crystal is approximately too large by at least 
8%. For all eight crystals in Table 2, the average least 
deviation of the ~'~ range from unity, with due regard 
for sign, is less than 1%. 

Propagat ion  of  s imulated error in Fmeas 

Additional insight into the influence of various kinds 
of error, both on the accuracy indicators and on some 
of the derived physical quantities for which the Fracas 
are ultimately used, was sought by propagating such 
error into a simulated set of EF Fracas. The model neces- 
sary for such simulation was chosen to consist of the 
atomic position coordinates and isotropic temperature 
factors experimentally determined for GaFeO3 and 
listed in Table 3 of Abrahams, Reddy & Bernstein 
(1965). The form factors and dispersion corrections 
given in that paper were regarded as free from error 
(EF). The structure factors thereby calculated for the 
four independent metal and six independent oxygen 
atoms formed a set of error-free F EF meas" 

The first type of error we consider is random in 
nature, and the corresponding set of Frneas is obtained 
from equation (9) 

~ .  - -  E~EF ~ AT EF 
m e a s - -  ~ m e a s  - r  J ,  . o ' F r a e a  s . (9) 

N, the random normal deviate, is computer generated 
(Chambers, 1968) and gives a random sequence of 
deviates normally distributed about zero. The value of 

EF aFme,s was chosen according to equation (10), as a 
reasonable representation of an error distribution" 

EF EF EF > 4 F m l n ,  aF,,,~as=S . F,,,~as if F~,~,~_ 
EF O'Fmeas = 4 s  . F m i n  i f  2 F m i n  < FraeasEF < 4 F m i n  , 

aFEmFeas=s(6Fmin_ EF Fracas ) i f  FmeasEF < 2Fmin , (10) 

where Fmin is the smallest value of FEmFeas . 
The resulting set of Fracas were then used, in a least- 

squares minimization procedure, to refine the coordi- 
nates of an initial model in which each metal atom 
was randomly displaced by 0.05 .~ from the 'correct' 
position (Table 3 of Abrahams, Reddy & Bernstein, 
1965) and each oxygen atom was randomly displaced 
by 0.10/~. The metal atom isotropic temperature fac- 
tors were initially set equal to 0.3 A 2, the oxygen atom 
temperature factors to 0.7/~2. The effects of three dif- 
ferent random sets of error, all with s = 0.03 in equation 
(10), are contained in Table 3. 

It may be noted that the value of R is smaller than 
the 3% error introduced into the Fmeas on a random 
basis" the value of wR appears more realistic, i.e. over 
3%. The qg0.01 ranges, for all sets, include unity - which 
is generally close to the midpoint of the range. This 
is to be expected, since the values for aFmeas in the 
least-squares refinement are identical with those of 
equation (9) used to produce the Fmeas set. Of con- 
siderable interest are the quantities A~max/a~, where 

is a coordinate. The maximum value for this quantity 
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is 2.9, obtained with the first set of random normal 
deviates generated. 

There should be no surprise, with random error only 
present in the Fracas, that the best coordinates obtained 
by least-squares refinement do not coincide with the 
correct coordinates. The probability that no coordinate 
belonging to a fitted set of k-coordinates should deviate 
by ycr is gi,,en by equation (11). 

Probability (lull < y:  i =  1, . . .  k) 

= exp ( -  o~z/2)cl~ (11) 
--y 

where u~ are unit normal deviates and the expression 
in square brackets is the normal probability function. 
For k =40, the probability that the maximum deviate 
is as large as 2.9cr is 13"8%: for y=2.5cr, the proba- 
bility rises to 39.3%. 

These results are completely consistent with the ex- 
pectation that the measured values of each ~ parameter, 
if the experiment is repeated many times and if random 
error only is present, form a normal distribution about 
the true, but unknown value of ~, with dispersion cry. 

Four kinds of systematic error were next generated, 
always in association with random error as given by 
equations (9) and (10). The term s was kept at 0.03 
and the third set of random normal deviates of Table 3 
was used throughout. 

The first error type of this group was one that varies 
systematically with intensity, as given by equation (I 2), 

( ' )  r = x  1+A.7222  , (1).) 

where I is the error-free intensity computed from FEm~as 
and/max is the maximum value of L The constant A 
was given values: 0.1, 0.2, 0.4 and ~ 1.0. It was as- 
sumed in the following calculations, in simulation of 

experiment, that the systematic error of equation (12) 
was undetected. Hence, the same assignment of o'Fmeas 
was made as in the case of random error only. The 
initial coordinates used in the random error case were 
also used in all the systematic error refinement proce- 
dures. A summary of the results thus obtained is given 
in Table 4 (the entry corresponding to A = 0 is identical 
with the third N-set entry of Table 3). 

Examination of Table 4 indicates that unexpectedly 
large values of A are required before any of the ac- 
curacy indicators are strongly affected. Thus, it is only 
for A = ,,~ 1.0 that the ~'0.01 range diverges strongly from 
unity: even for this A value, the largest displacements 
of position parameters from the correct value are of 
relatively low significance, although the temperature 
factors are very significantly in error. 

The large A values required to produce detectable 
changes in the indicators are understandable in terms 
of the intensity distribution of Fracas, shown in Fig. 1. 
The value of/max ~ 102,000 on the absolute scale, cor- 
responding to F(303), is far out in the tail of the dis- 
tribution. Indeed, of the 772 Fmeas, only 25 have 
I >  10,000 and only 185 have I >  1,000. Thus, a linearly 
increasing error in intensity resulting in an error in 
Imax of A per cent will produce an error of less than 
A/IO per cent in the great majority of intensities, that  
is, approximately an error less than A/20 per cent in 
the remaining 96.8% of the Fracas. 

A second kind of systematic error is one that  lin- 
early increases with scattering angle, as given by equa- 
tion (13): 

Fmeas_ v.F ( 0 ) -Fracas l+B'-0--£-ma x , (13) 

where 0 is the scattering angle in degrees. The angle 
0max = 45 o is the maximum value in the list of GaFeOa 
structure factors, using Mo K~ radiation (Abrahams, 
Reddy & Bernstein, 1965). The constant B was given 

N set R 
1 0.0258 
2 0.0257 
3 0.0249 

Table 3. Effects o f  random error 

wR q/0.0t  d~max/a~* dBmax/trB 
0"0331 0"933-1'067 2"9 2"0 
0'0329 0"925-1 '058 2"0 1 "4 
0'0321 0"903-1 '034 2"5 1 "4 

* ~ represents any position coordinate. 

Table 4. Effects o f  systematic intensity error 

A in 
equation (12) R wR qlo.o i ASF/aSF* A~max/O'~ 

0 0"0249 0"0321 0"903-1 "034 1 "4 2-5 
0" 10 0-0254 0"0323 0'908-1 '039 2"8 2"5 
0"20 0"0266 0"0328 0"923-1 "056 4"3 2"6 
0"40 0"0294 0'0345 0"975-1" 116 6-8 2"4 
1 "0t 0"0375 0-0428 1"217-1 '393 11" 1 2.0 

* SF is the single scale factor. 
"~ This value of A corresponds to an error of 10% irr IEV= 10000 (see Fig. 1). 

A Bmax/ crB 
1"4 
1"4 
1"7 
3"0 
5"3 
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values: 0.1, 0.2 and 0.4. It should be noted that equa- 
tion (13) introduces the systematic error into the struc- 
ture factor, and that equation (12) does so into the 
integrated intensity. As in the case for equation (12), 
each Fracas obtained by equation (13) also included 
random error (the third N-set of Table 3). The previous 
initial coordinates were again used in the least-squares 
refinement. 

160 - 

1 5 0 -  
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~ 11o 
o100 
0 

90- 
n 

eo- 

t ~  70- 
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50- z 
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I N T E N S I T Y  (x 10 - 4  Iabs) 

Fig. 1. Distribution of the number of Fracas, by intensity. 

Table 5 shows that none of the accuracy indicators 
are sensitive to errors systematic in scattering angle; 
indeed, R and wR become slightly smaller as the error 
increases. This systematic error is absorbed entirely 
into the scale factor and the temperature factors. The 
distribution of Fmeas by angle is presented in Fig.2, 
and is close to normal considering the upper angular 
limit of 45 ° 0. 

A third kind of systematic error is designed to sim- 
ulate a long term drift in the experiment. The structure 
factors were regarded as being measured in the se- 
quence given in Table 1 of Abrahams, Reddy & Bern- 
stein (1965) in which the Miller index h varies most 
rapidly and the index I least rapidly. This sequence is 
approximately analogous to one that might have been 
followed with an equi-inclination type diffractometer. 
An essentially linearly increasing error with time was 
used, as indicated by equation (14): 

Fracas- EF ( P ) -- Fm~s 1 + C. (14) 

where P is the position of the Fracas term in the above 
sequence. The constant C was assigned the values: 
0, 0.1, 0.2 and 0.4. The previously defined errors, 
weights and initial coordinates were again used. 

The results of this third kind of error are presented 
in Table 6. It is apparent that this error is detected 
with considerable sensitivity by q/0.ol, and to a lesser 
extent by the usual R and wR factors. Thus, at C =  0.05, 
R ~ 0.029 and wR ~ 0-033, only slightly larger than the 
values for C = 0  (Table 6). However, for C=0.05, 
OgO.Ol_ 1.05-1.18 indicating a minimum error in the 
assignment of o'Fmeas of 5%. 

A fourth kind of systematic error is in the absorp- 
tion coefficient for a spherical crystal of radius R. The 
'correct' value of /zR=0.9037 (Abrahams, Reddy & 
Bernstein, 1965) was replaced by the /tR' given in 
equation (15): 

#R'=lzR(I  + D) , (15) 

where D was assigned the values 0, 0.1, 0.2 and 0.4. 
These absorption corrections were applied to the inten- 

, B i n  
equation (13) R 

0 0.0249 
0.1 0.0237 
0.2 0.0227 
0.4 0.0222 

Table 5. Effects of  systematic error in angle 

wR '71o.ol ASF/aSF 
0.0321 0.903-1.034 1.4 
0 .0303 0.905-1.036 11.1 
0 .0288 0.918-1.051 21.5 
0 .0271 0.937-1-125 42.2 

2'5 
2"5 
2"4 
2"4 

ABmax/aB 
1"4 

10"8 
21 "4 
41 "5 

c in 
equation (14) R 

0 0.0249 
0.1 0.0319 
0.2 0.0473 
0.4 0.0792 

Table 6. Effects of  systematic error in time 

wR q/o.ol ASF/aSF 
0"0321 0"903-1"034 1.4 
0'0408 1 "207-1 "381 10.2 
0"0589 1 '832-2'097 13"2 
0 ' 0948  3"272-3"744 15"2 

A¢m,~/o'¢ 
2"5 
2"5 
2'2 
2.0 

ABmax/aB 
1"4 
4"1 
5"6 
6"2 
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sities corresponding to the EF Fracas, and then reconverted 
to Fracas which were used in least-squares refinement 
procedures similar to those carried out with the pre- 
vious systematic errors. 

The results of error in/zR are given in Table 7, and 
are seen to be comparable to those in Table 5: the 
indicators R and wR decrease slightly as the error 
increases, and °k'0. m remains within an acceptable range. 
By far the greatest error is found in the scale factor, 
and to a lesser extent, in the temperature factors. 

Discussion 

The results obtained experimentally with the accuracy 
indicators, and the effects produced both on the indi- 
cators and on the model parameters by the deliberate 
introduction of several kinds of error into the Fmeas, 
are considered in this section. A brief discussion on 
the selection of weights in least-squares refinement is 
also presented. 

Structure factors, in common with other quantities, 
cannot be measured accurately if the experiment con- 
tains unknown systematic error. If such error is known, 
it can either be eliminated experimentally or compen- 
sated for theoretically. In the typical diffractometer 
experiment, many of the sources of error listed in 
Table 1 can be completely eliminated neither experi- 
mentally nor theoretically. It is hence necessary to 
estimate the error in each Frneas, in the knowledge that 
each o'Fmeas also contains residual error. Alternatively, 
numerous independent sets of Fracas for a given matei- 
ial can be determined under various experimental 
conditions. If there is a normal distribution of each 
systematic error over these experiments, the true value 
of each Fmeas may be obtained together with a detailed 
knowledge of the errors associated with each experi- 
ment. The American Crystallographic Association 
Single-Crystal Intensity Project (Abrahams, Alexander, 
Furnas, Hamilton, Ladell, Okaya, Young & Zalkin, 
1967) and the International Union of Crystallography 
Single-Crystal Intensity Project (Abrahams, Hamilton 
& Mathieson, 1968) are the first large scale attempts 
at this alternate approach. It may be noted here that 
the interexperimental agreement obtained therein 
necessarily indicates an accuracy level that is too high, 
unless the above distribution of error has been com- 
plied with. 

It is clearly desirable to develop indicators internal 
to a given experiment, by means of which the accuracy 

may be determined. Such indicators should ideally 
depend only on the experiment. The customary crystal- 
lographic R factor is based entirely on the theoretical 
model. The wR factor may be calculated with or with- 
out reference to the experiment: the matter of correct 
weights is taken up again later in the discussion. The 
indicator q/~ [equation (8)] can only be properly eval- 
uated by reference to the experiment, as well as to the 
model, since it depends on the use of objective aFmeas 
determined before any refinement is undertaken. 

Table 2 contains the values of R, wR and ~ for the 
eight crystals used in the experimental test. With but 
one exception, R is calculated smaller than wR= 
[ ~ w A 2 F m e a s / Z  w F  2 11/2 for which w was taken as measJ , 

(o'2Fmeas) -1. The range of R and wR in Table 2, from 
0.034 to 0.089, is close to the contemporaneously 
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Fig. 2. Distribution of the number of Fmeas, by scattering angle. 
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Table 7. Effects of  error in I~R* 

R wR q*'0.01 ASF/aSF A~max/O'~ 
0"0249 0"0321 0"903-1"034 1"4 2"5 
0"0236 0"0304 0"903-1"034 25"3 2"6 
0"0224 0"0288 0"905-1 "036 49"6 2"5 
0"0203 0'0261 0"916-1 "048 101' 8 2"0 

* /tR is product  of absorption coefficient and radius of sphere. 

A B~ax/ tr B 
1"4 
2"0 
4"0 
9"5 
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'acceptable' limits for these values. However, these 
magnitudes provide only a measure of agreement with 
the model. The q/~ intervals not only give an indication 
of the state of the refinement, but on completion of 
the refinement, the residual error in the average o'Fmeas 
is also indicated. From Table 2 it can be seen that the 
average minimum residual error in trFmeas at a 1% 
significance level, for all eight compounds, is about 1%. 
The maximum residual error in trFmeas is about 21%. 

The effect of known error on the indicators and 
model parameters is now considered. Table 3 shows, 
for a random error of about 3 % in Fracas, that R tends 
to calculate about 17% too low, whereas wR calculates 
about 10% too high. With a probability of 13.8% that 
one of the 40 parameters in the model might differ 
from the correct value by as much as 2.9tr [see equation 
(11)], the maximum deviation in a model parameter in 
Table 2 appears entirely acceptable. 

Table 4 shows that a systematic error in intensity 
is likely to remain undetected by the indicators at 
moderate error levels. However, at such levels, the 
resulting errors in the model parameters are no greater 
than in the absence of systematic error. The lower limit 
of the q/0.01 interval does not exceed unity until A ---0.48. 
At this error level, the maximum error in intensity for 
96.8% of all reflections (see Fig. 1) is only 4.8%. 

It is convenient to consider next long term drift, i.e. 
systematic error as a function of time. Table 6 reveals 
that errors of this nature are very readily detected by 
the ~',  indicator. In fact, the error indicated by the 
lower limit of the ~0.0x interval is very close to the 
absolute error introduced into the Fracas, for the 'theo- 
retical' crystal under study. 

The effects of errors in Fracas that vary systematically 
with scattering angle are demonstrated in Tables 5 and 
7. It has already been noted that both R and wR appear 
to improve as the error is increased. The failure of 
q/0.0x to detect this kind of error is due to the compen- 
sating failure to assign correct values for o'Fmeas. The 
trFmeas used for both Tables 5 and 7 are based on 
equation (10) and correspond to a situation in which 
the experimenter is completely unaware of this system- 
atic error in his measurement. To determine the effect 
on q/0.0x of an assignment of trFmeas that correctly esti- 
mates the systematic error in Fracas, the appropriate 
value of 4k 2 [equation (4)] for each D value in Table 7 
was included in a new set of o"Fmeas. Table 8 contains 
both the 4k 2 terms and the indicator and parameter 
displacement values corresponding to those in Table 7 
but obtained with use of 'correct' tr'Fmeas. 

With correct weights, although R and wR again fail 
to detect the presence of large systematic error in the 

Fmeas, the q/o.ol range is depressed far from unity, 
strongly indicating error. It is to be expected that ~'0.01 
would similarly indicate error of the type given by 
equation (13) if aFmeas in that case were correctly as- 
signed. 

Finally, some comments are made on the use of 
weights in crystallographic least-squares refinement. 
The majority of current reports based on this technique 
make use of some kind of 'weighting' scheme: a minor- 
ity merely assume (incorrectly) that all their observa- 
tions are equally good and hence apply the same weight 
to all Fracas. Of the various weighting schemes, few 
are directly related to the experiment itself. A critical 
analysis of four common schemes, as they applied to 
one crystal, was given by Abrahams & Reddy (1965). 
It was shown that, for this case, the Hughes (1941) 
scheme was superior to Cruickshank's (1961), and also 
to those based purely on population statistics (Shoe- 
maker, Donohue, Schomaker & Corey, 1950) or on 
counting statistics. 

Central to the correct use of the Method of Least 
Squares is the solution of a set of normal equations 
derived from conditional equations of equal weight, 
i.e. an observation Fracas of weight W enters the con- 
ditional equation as if there were W separate equations 
each of unit weight (cf. Whittaker & Robinson, 1944). 
Hence, in addition to the possibility of calculating q/~ 
as an indicator of accuracy, the o'Frneas derived ex- 
perimentally by equation (4) also allow the weights 
(o'2Fmeas) -1 to be correctly applied in the least-squares 
refinement of structural parameters. 

It is a great pleasure to thank Dr C. L. Mallows for 
several illuminating conversations on statistical matters 
and J. L. Bernstein for carrying out the numerous cal- 
culations required for this work. 
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DISCUSSION 

HAMILTON: One should look at this indicator, not only as 
a single quantity but as a function of various variables. 
Thus, (at Brookhaven) after refining with the best weights 
we have been able to devise, we look at this indicator as a 
function of at least sin 0/2 and the intensity. Then we adjust 
the final weighting scheme to make the curves flat. In our 
view, this is quite a legitimate procedure since it is an 
empirical measure of a which is just as valid as some others 
used. 

ABRAHAMS: Having done this, isn't it proper to decide what 
is the experimental reason for the trends observed in the 
curves? Having detected the operative reasons, the experi- 
ment should be modified; the new curves should then have 
no indication of trend. 

SHOEMAKER: Are the r.m.s, changes in parameters produced 
by introducing these artificial errors similar to the maxi- 
mum errors that you have considered on your slide (Table 
3)? 

ABRAHAMS: The distribution is more or less normal. My 
interpretation is that many of the errors make little dif- 
ference to the derived atomic position coordinates - a 
view we have all tended to take from our own experience. 

JEFFERY: One problem in attaining high accuracy in low- 
symmetry crystals is that of producing a well-ground sphere 
of uniform radius. We must measure the deviations from 
sphericity. We have often found the relationship between 
the observed deviations in a particular direction and the ob- 
served intensities in that direction to be linear: we can then 
arrive at a measure of the error on a single reflexion compar- 
able with that which we could have achieved if there had 

been a full set of symmetry related reflexions. The trouble 
is that errors in the sphericity may be partly random and 
partly systematic and they are difficult to separate. It is 
probably only the random errors that have a linear rela- 
tionship with the errors in intensity. 

ABRAHAMS: We probably know neither the radius nor the 
absorption coefficient exactly. An error in/2 of 10% would 
have serious effects. 

DR. G.I. SMOLIN (Institute of Silicate Chemistry, Academy of 
Sciences of the USSR, Leningrad) submitted a written 
communication on 'Errors in Absorption Corrections for 
Spherically or Cylindrically Ground Crystals'. As this com- 
munication has been published in the normal literature 
(Smolin, 1968) only the main points are quoted here, which 
are very relevant to the discussion. 

Dr Smolin points out that the surface layer of a spherical 
or cylindrical crystal produced by abrasive treatment has a 
density, and, therefore, a linear absorption coefficient, 
which may be quite different from that of the bulk material. 
The depth of the seriously affected layer is about one-fifth 
of the particle size of the abrasive powder. He calculates the 
effect on the absorption correction for cylindrical crystals 
and shows that the use of the standard tables can produce 
gross errors, especially for heavily absorbing materials at 
low Bragg angles. He concludes that these tables can be 
used only for crystals which have been polished or ground 
with a very fine abrasive. He goes on to describe an im- 
proved sphere grinder of the type in which the crystal is 
tumbled inside an abrasive cavity. A particular feature of 
the device is that interchangeable components allow a selec- 
tion of the optimum cavity size and abrasive. The method 
has been used both for hard silicates and for soft organic 
crystals. 

DIAMOND: (a) If there are systematic errors present, the 
separate observations may be correlated: that is, the errors 
will not be independent. This complicates the issue further 
(but should be partly resolvable by reference to the inverse 
covariance matrix). 

(b) Is the structure centric or acentric? The atomic posi- 
tions are more critically dependent on the phase angle than 
on F and this fact may account for the small change in 
atomic parameters if the structure is centric. 

ABRAHAMS: The structure is polar. 

HAHN : Apparently the only quantities which were invariant 
were the chemically important bond lengths and angles. 

ABRAHAMS: Yes. However, you must be very careful if you 
wish to measure physically significant quantities such as the 
absolute intensity, the Debye temperature etc. 

MEGAW: I would like to make two points. The intensity 
distribution cannot be expected to be normal unless atomic 
position coordinates are roughly random. This is a generali- 
zation which may not be true for GaFeO3, but does apply 
to a good many oxides. If the positions approximate to 
special positions (even if the actual symmetry is low) this is 
not true; errors due to incomplete refinement will not be 
Gaussian, and the trial value of the parameters will in- 
fluence the path of refinement. Secondly, the weighting 
scheme appropriate to the final stages is not always correct 
for the earlier stages, especially when the position param- 
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eters are non-random (without being special); without 
separate consideration of different classes of intensities, 
misleading trial models may be found. 

ABRAHAMS: This particular structure (based on space group 
Pba2) does not closely approximate a higher symmetry 
space group. 

ALEXANDER: (a) We have noted the tendency to apply fac- 
tors of the order of 1.5 to 2.0 to conventional R values to 
soak up the inaccuracies that we realize to be present, but 
still the figures do not put us on a correct statistical basis. 

(b) The Z 2 distribution method for the detection of syste- 
matic error may have a parallel with the work of the late 
Mr K. Beu on the determination of precise lattice param- 
eters. 

LADELL: Would you consider chemical structural results as 
allowable as an internal check, e.g. the coplanarity of five 
particular atoms in a structure? 

ABRAHAMS: I suppose it is permissible to refer to internal 
consistency in respect of chemical features, provided this is 
specifically stated; e.g. if there are two molecules in the asym- 
metric unit, conclusions may be derived on the assump- 
tion that these are in fact identical. However, the experimen- 
tal accuracy of the measured F cannot easily be assessed 
quantitatively in this way. 

RIVA D1 SANSEVERtNO: Concerning your criticism of the use 
of unit weights, when do you consider that a statistically 
acceptable weighting scheme should be used? 

ABRAHAMS: I would consider it correct to use the estimated 
weights, as outlined above, at all stages. 

HAMILTON: In the early stages of analysis while one is still 
trying to solve the structure, or before one has reached the 
linear range of least squares, perhaps one may choose to use 
artificial weighting schemes to reject or down-weight weak 
or strong terms or modify terms in a selected angular range. 

RWA D1 SANSEVERINO: In your alteration of the weighting 
scheme, you may be adjusting the situation to what you 
expect or desire. 

SANDOR: The study of the effect of simulated systematic 
errors on a hypothetical structure shows hardly any correla- 
tion between the errors in the positional and thermal para- 
meters of the atoms. I wonder how far this apparent lack 
of correlation applies to real cases where various types of 
systematic and random errors occur simultaneously. 

Would it not be worth extending the present study by 
mixing various types of errors and study their combined ef- 
fect on the errors of the positional and thermal parameters 
of a hypothetical structure? 

ABRAHAMS: We plan to do this. 
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Real Crystals as a Source of  Error 

F1.2 

BY H. J. MILLEDCE 

Chemistry Department, University College, Gower Street, London W.C. 1., England. 

Specimen-dependent properties of real crystals which influence the accuracy of intensity measurement 
are size, shape, homogeneity, stability and environment. Variations of any of these will affect the cor- 
rections necessary to allow for absorption and extinction in a given experimental measurement; these 
in turn will affect the evaluation of the absolute intensity, and the two principal tests for internal and 
external consistency, namely variation within any form {hkl }, and variation of mean values I {hkl } 
between different specimens. They may also affect the relative values of I {hkl } within one data set, 
leading for example to spurious anharmonicity in the temperature factors derived for an ellipsoidal 
crystal. Examples of practical solutions of actual problems involve waxes instead of glues for crystal 
mounting, miniature films or intensifying screens for use in unstable situations or with very small 
crystals, integrated oscillation photographs for intensity measurements from poor specimens, rotation 
photographs for high symmetry crystals, the use of Laue photographs for the detection of order-disorder 
phenomena, and the incorporation of an iron-55 source in an automated diffractometer to provide an 
internal standard for intensity measurements. 

Introduction 

The influence of specimen-dependent properties of  real 
crystals on the accuracy with which the intensities 
can be measured may  be summarized in the diagram 
in Fig. 1. The existence of these effects has been known 
for  many  years, and the purpose of  this paper  is to 
focus at tention on the fact that  because many  of these 
problems often confront  the average experimenter 

simultaneously, the precision at tainable in individual 
counter  measurements  (better than 1%)  can seldom be 
utilized to achieve structure amplitudes of comparable  
accuracy. Even the precision of individual photo-  
graphic intensity measurements ,  at best about  2 %, can- 
not  generally be t ransferred to the final list of F(hkl). 

The fundamenta l  problem, therefore, consists firstly 
in recognizing what  type of  errors introduced by the 
nature of  the specimen will seriously affect the type of  
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